SBMPTN

Pertanyaan

Jika f(x) = 1+sin x + sin^2 + sin^3 + ....,
0° <= x < 45°, maka integral 0 sampai 45° f(x) dx = ....
A. -√2
B. -1
C. 0
D. 1
E. √2

1 Jawaban

  • f(x) = 1 + sin x + sin^2 x + sin^3 x + .... = S~ = a/(1 - r)
    a = 1, r = sin x
    f(x) = a/(1 - r)
    = 1/(1 - sin x)
    = 1/(1 - sin x) . (1 + sin x)/(1 + sin x)
    = (1 + sin x)/(1 - sin^2 x)
    = (1 + sin x)/(cos^2 x)
    = 1/(cos^2 x) + (sin x)/(cos^2 x)
    = sec^2 x + (sin x)/(cos x) . 1/(cos x)
    = sec^2 x + Tan x sec x
    Int f(x) dx
    = Int (sec^2 x + Tan x sec x) dx
    = tan x + sec x | batas x = 0° sampai x = 45°
    = (Tan 45° + sec 45°) - (Tan 0° + sec 0°)
    = (1 + √2) - (0 + 1)
    = 1 + √2 - 1
    = √2

Pertanyaan Lainnya